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Logically Independent von Neumann Lattices 
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Three definitions of logical independence of two von Neumann lattices ~(&tR), 
~'(~2) of two sub-von Neumann algebras Jill, N_~ of avon  Neumann algebra At 
are given and the relations of the definitions clarified. It is shown that under 
weak assumptions the following notion, called "logical independence" is the 
strongest: A ^ B 4= 0 for any 0 4: A ~ ~'(Jftl), 0 4: B ~ ~(~2) .  Propositions 
relating logical independence of ~(Jl~t), ~(J~2) to C*-independence, W*- 
independence, and strict locality of M.~, Ha are presented. 

1. INTRODUCTION 

Let S be a quantum system, SI, $2 be two subsystems of S, and assume 
that the observable quantities of S, S1, $2 are represented by (the self-adjoint 
parts of) a yon Neumann algebra ~ and of two yon Neumann subalgebras 
~ ,  ~2 of ~/t, respectively. The quantum logics of the systems S~, $2, and S 
are then given by the corresponding projection lattices ~(JI/~l), ~ (~ l ) ,  and 
~(~/~). [For the operator algebraic notions used in this paper see, e.g., Takesaki 
(1979).] The aim of this paper is to formulate an appropriate definition of 
"logical independence" of the two yon Neumann lattices ~(~/11), ~ (~ j ) ,  to 
raise the problem of characterization of logically independent pairs, and to 
relate logical independence of ~(~ l ) ,  ~(~/~1) to statistical independence 
conditions of the pair J/tl, ~2. 

The natural logical independence condition that comes to mind is that 
"no nontrivial proposition in ~(~1)  should imply--or be implied by--any 
nontrivial proposition in ~(~/~)." In Section 1 we first consider different 
implementations of this idea by specifying the "implies" in terms of abstract 
orthomodular lattices in three ways. Having the three notions of logical 
independence, their relation is clarified in Propositions 1-3, which show that 
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under natural and weak assumptions the three definitions coincide if the 
lattices are distributive, and that one of the semantic independence conditions 
is strictly stronger than the two others in the nondistributive case. Applied 
to yon Neumann lattices, this strongest condition, which was introduced and 
called simply "logical independence" in a previous paper (R6dei, 1995), 
requires that A ^ B :P 0 for any 0 :P A E ~t 1 and 0 :P B ~ ~t2. The problem 
of characterizing logically independent pairs of von Neumann lattices in this 
sense is then raised in Section 3, and several propositions are presented that 
relate logical independence to other statistical independence conditions such 
as C*-independence, W*-independence, and strict locality. 

The problem of logical independence of von Neumann lattices is moti- 
vated in part by the situation in quantum field theory, where a relativistically 
covariant net O ~ M~(O) of local yon Neumann algebras A/t(O) (indexed by 
the open bounded spacetime regions O in the Minkowski spacetime) is given 
(Haag, 1992); and, if ~ (Ol )  and ~(O2) are two yon Neumann algebras 
associated to two spacelike-separated spaetime regions Oi, 02, then the two 
local systems confined to the regions Or, 02 cannot influence each other, 
i.e., the two systems should be independent. Indeed, in this framework there 
are a number of nonequivalent notions of "independence" of the local algebras 
[see Summers (1990) for a review], and one expects that the independence 
of the observable algebras is also manifest in the corresponding quantum 
logics being logically independent. It will be seen that this is indeed the case. 

2. THREE NOTIONS OF LOGICAL INDEPENDENCE 

Let L be an orthomodular lattice with minimal and maximal elements 
0, I and with lattice operations A, v , / ,  and let L~ and L2 be two orthomodular 
sublattices. Let A ~ B denote a semantic entailment relation between the 
propositions A, B. The idea of semantic independence of L~, L2 is that no 
(nontrivial) proposition in LI should imply any (nontrivial) proposition in L2 
and conversely, no (nontrivial) proposition in/-,2 should imply any (nontrivial) 
proposition in LI, where "implies" is meant in the sense of semantic 
entailment: 

Definition 1. Lj, L2 are semantically independent if 

semantic independence; A ~ B, B ~ A (1) 

for a n y 0 , 1 = ~ A  s L~ and0,  I ~ = B  ~ L 2. 

Assume now that there exists a two-place implication connective ~ in 
L representing certain features of the "implication" understood as semantic 
entailment. The idea of J- independence of L~, L2 is that no (nontrivial) 
proposition in L~ "implies" or is implied by any (nontrivial) proposition in 
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L2, where "implies" is now taken in the sense that the inference (with respect 
to ~ )  between the elements of L1 and L2 is not a tautology: 

Definition 2. Ll, 1-,2 are called ~-independent if 

~-independence:  (A ~ B) ~ I and (B ~ A )  ~ I (2) 

for any 0, I ~ A E Ll and 0, I r B ~ L2. 

In a previous paper (R6dei, 1994) the following definition of logical 
independence was formulated: 

Definition 3. Lt, L2 are logically independent if 

logical independence: (A A B) r 0 (3) 

for any 0 v~A ~ LI, 0 4: B ~ L2. 

Definition 3 also expresses semantic independence in the following 
sense: If F = ("/1, "Y2 . . . . .  %) is a set of closed formulas (sentences) and 
is a closed formula in the language 2s then ~ is said to be implied by (to 
be a consequence of) F (notation: F ~ qb), if the class of sentences F U 
{ - ~  } cannot be satisfied, where - ~  denotes the negation of the formula qb 
and the subscript s in ~ indicates that this semantic entailment is different 
from the one in Definition 1. If 2s is just the language of the classical 
propositional calculus, then F ~s dO is equivalent to the condition that the 
representative in the propositional algebra of the sentence -/~ A "Y2 A "'" ,X 
~,, ^ ( ' ~ )  is equal to the empty set, i.e., it is the zero element 0 of the 
propositional algebra, which is a Boolean algebra (orthocomplemented dis- 
tributive lattice). Based on this notion of dependence, �9 can be said to be 
logically independent of F if neither �9 nor (--,alp) is implied by F: F ~r dO, 
F N~ (-~dp), i.e., if both F U {q~} and F U {-~dp} can be satisfied. This logical 
independence corresponds to the algebraic condition that the representatives in 
the propositional algebra of neither of the sentences ("/i ^ ~2 "'" a ( ~ ) )  
and ( ~  /x ~/2 "'" A ~ )  is equal to the zero element. Generalizing, one can 
define two sets of sentences Fl and F2 to be logically independent of each 
other if each of the four sets of sentences F1 U F2, Fl U ~F2, ~FI U F2, 
and "F1 U ~F2 is a satisfiable set of sentences (-~F denoting the set of 
sentences containing the sentences -~'Yi, "Yi E F). This leads to the following 
notion of logical independence of two Boolean subalgebras ~ and ~2 of a 
Boolean algebra ~ :  ~ l  and ~2 are said to be logically independent if for 
any nonzero A~ e ~1 and for any nonzero A2 E ~2 their meet is nonzero: 
A~ ^ A2 =P 0. This definition does not depend on the distributivity of the 
lattices ~ ,  ~ t ,  and ~2, and so the definition can be immediately carried over 
to the case where ~ is replaced by an orthomodular lattice. 
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Having the three definitions of independence, we ask the question of 
the relation between them. Clearly, as long as the key elements in the defini- 
tions (the semantic entailment ~ in Definition 1, the connective ~ in Defini- 
tion 2, and the lattice operation ^ in Definition 3) are not linked to each 
other, the three independence notions remain unrelated. 

In the case of the so-called concrete quantum logic, where L is 3 '(~),  
the lattice of projections of a Hilbert space ~ ,  the semantic entailment ~ is 
identified with the usual partial ordering --- in ~ (~ ) :  A ~ B if and only i f  
A ~ B. Now, if ~ is identified with -< in the orthomodular lattice L, then 
i fA - B for some A ~ Li, B ~ L 2, then A is orthogonal to B• consequently 
A ^ B • = 0, and since B • is in L2 if B is (L 2 is a sublattice), LI, L2 are not 
logically independent. So we have the following result. 

Proposition 1. If the semantic entailment ~ is given by the partial 
ordering in L, then logical independence of L~, L2 implies that L1, L2 are 
semantically independent. 

The connective ~ ,  too, is related to the semantic entailment: The stan- 
dard way of specifying ~ is in terms of the so-called "implicative criteria" 
that link ~ to ~.  What one expects in this direction is that the more faithfully 

reflects the properties of the semantic entailment, the closer the notions 
of semantic and ~-independence are. Let us recall the minimal implica- 
tive criteria. 

E I fA ~ B ,  t h e n ( A ~ B )  = I 
MP A A (A ~ B) ~ B 
MT - - B / x ( A ~ B )  ~ --A 

E (law of entailment), MP (modus ponens), and MT (modus tollens) are 
called minimal implicative criteria; every reasonable implication connective is 
supposed to satisfy them (Hardegree, 1976, 1979). 

Assume now that the semantic entailment ~ is given by the partial 
ordering -< in L. Then E and MP together are equivalent to 

A - B  if and only if ( A ~ B )  = I  (4) 

Obviously, the following proposition is true then: 

Proposition 2. If the semantic entailment is given by the partial ordering 
in the orthomodular lattice L and ~ is an implication connective satisfying 
the minimal implicative criteria, then the semantic independence of L> L2 is 
equivalent to ~-independence of L�91 L2, and logical independence implies 
both the semantic and J-independence.  

We note at this point that in an orthomodular lattice there exist implica- 
tion connectives satisfying the minimal implicative criteria. Examples are 
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the so-called quantum conditionals: In any orthomodular lattice there exist 
three conditional operations which can be written as lattice polinoms and 
which satisfy E, MP, and MT. These three conditionals are the following 
(Hardegree, 1976, 1979): 

A o I B  = A  z v ( A / x B )  

A ::~2 B = (A"/x B -c) v B 

A ~ 3 B =  (A/xB)  v ( A  •  v ( A  •  • 

Each of these conditionals is a generalization of the classical material implica- 
tion (A ~ B) = A • v B in the sense that each of the three reduces to the 
classical conditional if restricted to a Boolean sublogic. 

The next proposition gives a sufficient condition for L~, L 2 which implies 
that the o- independence of L~, L• implies logical independence. 

Proposition 3. Let ~ be given by --- and assume that ~ satisfies the 
minimal implicative criteria. If Ll, L2 are such that the orthomodular lattice 
generated by any two elements A ~ LI, B E L 2 is a distributive sublattice 
in L, then o- independence of Lt, L 2 implies logical independence of L1, L2. 

Proof Assume that L1, L2 are not logically independent. Then there exist 
0 v~ A ~ Ll, 0 :~ B E L 2 such that A /x B = 0. Using the distributivity 
assumption, we can write then 

A = A / x I = A / x ( B v B  z) 

= (A/xB) v ( A / x B  • = 0 v ( A / x B  • = A / x B  z 

which implies A -< B • and so by (4) we have (A ~ B • = / ,  and Ll, L• are 
not J- independent .  

In the projection lattice of avon  Neumann algebra a sublattice generated 
by a set Z of projections is distributive if and only if the projections in Z are 
pairwise commuting; hence as a particular case of Proposition 3 we have the 
following result. 

Proposition 4. Let ~1,  d/[ 2 be mutually commuting yon Neumann subal- 
gebras of the von Neumann algebra A/t (i.e., AB = BA for every A ~ d/t 1 
and B ~ &2) and ~(ds ~(d/t2) be the corresponding von Neumann lattices. 
If ~ (&l ) ,  ~'(~2) are o- independent  with respect to any of the quantum 
conditionals o (which in this case means that the lattices are actually indepen- 
dent with respect to the classical material implication), then ~(./ls ~/'(ds 
are logically independent. 

Thus we see that in the case when L is distributive and LI, L• are two 
distributive sublattices, the three independence notions coincide under the 
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natural identification of N with -<, and under the assumption that ~ satisfies 
minimal implicative criteria. However, in the nondistributive, truly quantum 
case logical independence is strictly stronger than semantic or ~- indepen-  
dence, since J- independence does not imply logical independence, as the 
following counterexample shows: 

Consider the six-element orthomodular lattice 

L6 = { A , A • 1 7 7  

with the partial ordering given by 

0 --- X-< I (X = A, A • B, B • 

If ~ is taken to be <-- and ~ satisfies the minimal implicative criteria, then 
the two sublattices L1 = {0, A, A • I} and L2 = {0, B, B • l} are ~ -  
independent (and also semantically independent), but not logically 
independent. 

3. L O G I C A L  AND STATISTICAL INDEPENDENCE 

Now the question is: do logically independent pairs of von Neumann 
lattices exist? The answer is yes. One way to characterize logical independence 
is to relate logical independence of ~(~tl) ,  ~(~t2) to statistical independence 
conditions formulated for the algebras ~ ] ,  ~2. Let us first recall the relevant 
definitions of statistical independence. 

Two C*-subalgebras ~ l ,  ~2 of the C*-algehra q~ are called C*-indepen- 
dent if for any state qbl on ~ l  and for any state qb2 on ~2 there is a state qb 
on ~ such that qb(A) = qb](A) and qb(B) = qbz(B ) (A ~ ,~/i, B ~ s~2) (Haag 
and Kastler, 1964; Roos, 1970). The C*-independence of the pair (~/i, ~/2) 
means that no preparation in any state of the system described by ~I  can 
exclude any preparation of the system described by o12. The pair (d/tl, ~t2) 
is said to be W*-independent if for any normal state +1 on J[/tl and for any 
normal state ~b2 on ~2  there is a normal state qb on .kt that extends both ~b l 
and qb2 (Summers, 1990). Let (~1, M~z) be an (ordered) pair of von Neumann 
subalgebras of the von Neumann algebra ~ .  The pair (~ft~, A/re) is said to 
have the independence condition strict locality (or said to be strictly local) 
if for any B ~ ~'(./[/t2) and for any normal state qb~ on ~1 there exists a 
normal state qb on ~ such that qb(B) = 1 and dp(A) = +t(A) for all a ~ ~ j  
(Kraus, 1964). If A/[l, A~2 are mutually commuting, then W*-independence 
of (~ j ,  A/t2) implies strict locality of the pair, and strict locality implies C*- 
independence of (~t~, ~2) [for proofs of these statements see Summers 
( 1990)]. 
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Proposition 5. The following statements hold: 

(i) If ~ ,  ~2 are mutually commuting, then ) ( ~ l ) ,  ~(J~ '2)  a r e  logi- 
cally independent if and only if ~ l ,  d[/~2 a re  C*-independent. 

(ii) If ~t is a finite-dimensional full matrix algebra, then C*-indepen- 
dence of A/tl, ./bt2 implies logical independence of )(Jbtt), )(~t2), 
whether or not ~ ,  ~2 are mutually commuting. 

(iii) If (./btl, ~2) is either a W*-independent or a strictly local pair, 
then ) ( ~ , ) ,  ) ( ~ 2 )  are logically independent whether or not HI, 
�9 J~'2 a re  mutually commuting. 

For the proofs of the statements in the above proposition as well as for some 
further statements, and for an example of a logically nonindependent pair of 
von Neumann lattices we refer to Rrdei (1995). 

As a consequence of (i) in Proposition 5, the logics ) (~(O1))  and 
)(~(O2))  associated to the von Neumann algebras ~(O1), ~(O2) of local 
observables localized in spacelike-separated wedge and double cone regions 
O1, O2 are logically independent, since the algebras ~ (O0 ,  ~t(O2) commute 
by the axiom of microcausality and they also are C*-independent (Haag, 
1992). 

A simpler example of a mutually commuting C*-independent pair of 
C*-algebras is the pair (Mn Q / ,  I | Mn), where M, is the full matrix algebra 
of complex n by n matrices and M = M, | M,. The lattices @(M, | I), 
~/'(I Q M,) are then logically independent. A special case is the Bohm-Bell 
system M, | M2, so the propositions on the events at the "left and fight 
wings" of the system are logically independent. Note that there are also 
examples of finite-dimensional matrix algebras that do not mutually commute 
and are C*- (hence also W*-) independent (Summers, 1990). The correspond- 
ing lattices are logically independent by (iii) of Proposition 5. 

Proposition 5 does not give a complete characterization of logical inde- 
pendence-not  even in regard to statistical independence. Let us formulate 
just two open questions: 

Problem 1. Does C*-independence of ) ( ~ l ) ,  ) (A/l.2) imply logical inde- 
pendence in general, i.e., when ~ l ,  "~2 a re  not mutually commuting and 
is arbitrary? In view of (ii) in Proposition 5 one should first investigate the 
case when ~ is a nondiscrete, finite von Neumann algebra. 

Problem 2. What conditions in addition to logical independence of 
)(~[-1), )(Jbt2) imply mutual commutativity of Jbt 1, Jbt2? 
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